Introduction: As a result of the past session, we would like to raise the following points for discussion:

- Have the talks suggested any new science?
- Is there something you would like to do but are unsure if the VO can help?
- Things that would be good to do using the VO that are currently possible, or currently impossible.
- How will the VO fit into your research?
 - If yes, what? Where? How?
 - If no, why? What needs to change?
 - If unsure, what extra is needed? What would sway the decision?
- What is currently good or bad with VO tools and standards?
- Are the resources available:
 - Broad enough?
 - Sufficiently accessible?
 - Usable?
- How do you work?
 - Tooling (Topcat, Aladin, etc)?
 - Scripting (Language, environment, requirements)
 - What is missing from the VO?

McCracken: As a multi-wavelength astronomer, I would like more tools to work on multiple objects. I would also like to become aware of the Python front end of AstroGrid, for example, cutout services.

Allen: Such types of services require modularity (for example, SDSS provides cutouts of a given size).

Chilingarian: "VO science” is not doing science using VO tools, it should be something much broader. I also believe we should promote the VO, for example the IVOA should encourage users to acknowledge the VO pieces they use. We need credit for VO developments to sustain future funding of these projects.

Noddle: The VO will be a complete success when nobody realises they are using it. Is there "new" science being done instead of "a lot more of the same”?

Chilingarian: More of the same science can lead to new discoveries.

Škoda: Outliers are an example in this case. Time information is not currently available in the VO.

Allen: Are the data in the VO well described? Are the tools enough? And name the most important things.

Padovani: VOSpec should be able to allow selection based on exposure time or offset.

Allen: Aperture information for example is there but is not usable.

Osuna: If the exposure time is provided by the server then there is the possibility to make a request based on it in VOSpec. We have to encourage service providers to include as many metadata as possible.

Verdoes Kleijn: A strength of the VO is a quick measurement of available data.

Noddle: Is it worth putting in the effort to connect IDL to the VO, i.e. what Python does now?

Santander-Vela: There are pros and cons of using Python only or using Python and IDL.

Chilingarian: Python is not good at advanced mathematical tools but is good as the glue between applications, and it’s free.

McCracken: Is there a good free XML parser?

Allen: I would be interested in hearing about what your experiences are with learning the VO?

Fathi: When I started to learn about the VO I found in the beginning it was confusing. The way the VO is brought to
the astronomer could be better, more astronomy-oriented with less technical details. Example use cases are very instrumental for the user, the more the better.

Gil-Merino: A nice presentation makes the tools more attractive and easier to use. However, how can the community interact with the VO world, for example to obtain answers to questions?

Osuna: We have the Euro-VO helpdesk at http://help.euro-vo.org/esupport/ and the IVOA applications archive at http://www.ivoa.net/forum/.

McCracken: How about opening up the mail to Google and people can explore the ticket archive (Terapix forum is an example)?